Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 11(6): e0231523, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37874150

RESUMO

IMPORTANCE: The 2022 outbreak of the monkeypox virus already involves, by April 2023, 110 countries with 86,956 confirmed cases and 119 deaths. Understanding an emerging disease on a molecular level is essential to study infection processes and eventually guide drug discovery at an early stage. To support this, we provide the so far most comprehensive structural proteome of the monkeypox virus, which includes 210 structural models, each computed with three state-of-the-art structure prediction methods. Instead of building on a single-genome sequence, we generated our models from a consensus of 3,713 high-quality genome sequences sampled from patients within 1 year of the outbreak. Therefore, we present an average structural proteome of the currently isolated viruses, including mutational analyses with a special focus on drug-binding sites. Continuing dynamic mutation monitoring within the structural proteome presented here is essential to timely predict possible physiological changes in the evolving virus.


Assuntos
Monkeypox virus , Proteoma , Humanos , Monkeypox virus/genética , Consenso , Surtos de Doenças , Inteligência Artificial
2.
Sci Rep ; 13(1): 774, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641503

RESUMO

Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.


Assuntos
COVID-19 , Aprendizado Profundo , Animais , Cricetinae , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2 , Cricetulus , Simulação de Dinâmica Molecular , Ligação Proteica
3.
Sci Rep ; 12(1): 14534, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008461

RESUMO

To date, more than 263 million people have been infected with SARS-CoV-2 during the COVID-19 pandemic. In many countries, the global spread occurred in multiple pandemic waves characterized by the emergence of new SARS-CoV-2 variants. Here we report a sequence and structural-bioinformatics analysis to estimate the effects of amino acid substitutions on the affinity of the SARS-CoV-2 spike receptor binding domain (RBD) to the human receptor hACE2. This is done through qualitative electrostatics and hydrophobicity analysis as well as molecular dynamics simulations used to develop a high-precision empirical scoring function (ESF) closely related to the linear interaction energy method and calibrated on a large set of experimental binding energies. For the latest variant of concern (VOC), B.1.1.529 Omicron, our Halo difference point cloud studies reveal the largest impact on the RBD binding interface compared to all other VOC. Moreover, according to our ESF model, Omicron achieves a much higher ACE2 binding affinity than the wild type and, in particular, the highest among all VOCs except Alpha and thus requires special attention and monitoring.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Enzima de Conversão de Angiotensina 2/genética , COVID-19 , Biologia Computacional , Humanos , Pandemias , Peptidil Dipeptidase A/metabolismo , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
Front Med (Lausanne) ; 9: 1061142, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36590977

RESUMO

Introduction: The current coronavirus pandemic is being combated worldwide by nontherapeutic measures and massive vaccination programs. Nevertheless, therapeutic options such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main-protease (Mpro) inhibitors are essential due to the ongoing evolution toward escape from natural or induced immunity. While antiviral strategies are vulnerable to the effects of viral mutation, the relatively conserved Mpro makes an attractive drug target: Nirmatrelvir, an antiviral targeting its active site, has been authorized for conditional or emergency use in several countries since December 2021, and a number of other inhibitors are under clinical evaluation. We analyzed recent SARS-CoV-2 genomic data, since early detection of potential resistances supports a timely counteraction in drug development and deployment, and discovered accelerated mutational dynamics of Mpro since early December 2021. Methods: We performed a comparative analysis of 10.5 million SARS-CoV-2 genome sequences available by June 2022 at GISAID to the NCBI reference genome sequence NC_045512.2. Amino-acid exchanges within high-quality regions in 69,878 unique Mpro sequences were identified and time- and in-depth sequence analyses including a structural representation of mutational dynamics were performed using in-house software. Results: The analysis showed a significant recent event of mutational dynamics in Mpro. We report a remarkable increase in mutational variability in an eight-residue long consecutive region (R188-G195) near the active site since December 2021. Discussion: The increased mutational variability in close proximity to an antiviral-drug binding site as described herein may suggest the onset of the development of antiviral resistance. This emerging diversity urgently needs to be further monitored and considered in ongoing drug development and lead optimization.

5.
Nat Commun ; 12(1): 3483, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108481

RESUMO

The hexameric AAA-ATPase Drg1 is a key factor in eukaryotic ribosome biogenesis and initiates cytoplasmic maturation of the large ribosomal subunit by releasing the shuttling maturation factor Rlp24. Drg1 monomers contain two AAA-domains (D1 and D2) that act in a concerted manner. Rlp24 release is inhibited by the drug diazaborine which blocks ATP hydrolysis in D2. The mode of inhibition was unknown. Here we show the first cryo-EM structure of Drg1 revealing the inhibitory mechanism. Diazaborine forms a covalent bond to the 2'-OH of the nucleotide in D2, explaining its specificity for this site. As a consequence, the D2 domain is locked in a rigid, inactive state, stalling the whole Drg1 hexamer. Resistance mechanisms identified include abolished drug binding and altered positioning of the nucleotide. Our results suggest nucleotide-modifying compounds as potential novel inhibitors for AAA-ATPases.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/química , Adenosina Trifosfatases/química , Compostos de Boro/química , Proteínas de Saccharomyces cerevisiae/química , Domínio AAA , ATPases Associadas a Diversas Atividades Celulares/antagonistas & inibidores , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo , Adenosina Trifosfatases/antagonistas & inibidores , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Compostos de Boro/farmacologia , Resistência a Medicamentos/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Mutação , Nucleotídeos/química , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Sci Rep ; 11(1): 4320, 2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33619331

RESUMO

Since the worldwide outbreak of the infectious disease COVID-19, several studies have been published to understand the structural mechanism of the novel coronavirus SARS-CoV-2. During the infection process, the SARS-CoV-2 spike (S) protein plays a crucial role in the receptor recognition and cell membrane fusion process by interacting with the human angiotensin-converting enzyme 2 (hACE2) receptor. However, new variants of these spike proteins emerge as the virus passes through the disease reservoir. This poses a major challenge for designing a potent antigen for an effective immune response against the spike protein. Through a normal mode analysis (NMA) we identified the highly flexible region in the receptor binding domain (RBD) of SARS-CoV-2, starting from residue 475 up to residue 485. Structurally, the position S477 shows the highest flexibility among them. At the same time, S477 is hitherto the most frequently exchanged amino acid residue in the RBDs of SARS-CoV-2 mutants. Therefore, using MD simulations, we have investigated the role of S477 and its two frequent mutations (S477G and S477N) at the RBD during the binding to hACE2. We found that the amino acid exchanges S477G and S477N strengthen the binding of the SARS-COV-2 spike with the hACE2 receptor.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , Simulação de Dinâmica Molecular , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/metabolismo , Enzima de Conversão de Angiotensina 2/química , Humanos , Relação Estrutura-Atividade
7.
Biochim Biophys Acta ; 1861(5): 462-70, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26869448

RESUMO

Monoglyceride lipases (MGLs) are a group of α/ß-hydrolases that catalyze the hydrolysis of monoglycerides (MGs) into free fatty acids and glycerol. This reaction serves different physiological functions, namely in the last step of phospholipid and triglyceride degradation, in mammalian endocannabinoid and arachidonic acid metabolism, and in detoxification processes in microbes. Previous crystal structures of MGLs from humans and bacteria revealed conformational plasticity in the cap region of this protein and gave insight into substrate binding. In this study, we present the structure of a MGL from Saccharomyces cerevisiae called Yju3p in its free form and in complex with a covalently bound substrate analog mimicking the tetrahedral intermediate of MG hydrolysis. These structures reveal a high conservation of the overall shape of the MGL cap region and also provide evidence for conformational changes in the cap of Yju3p. The complex structure reveals that, despite the high structural similarity, Yju3p seems to have an additional opening to the substrate binding pocket at a different position compared to human and bacterial MGL. Substrate specificities towards MGs with saturated and unsaturated alkyl chains of different lengths were tested and revealed highest activity towards MG containing a C18:1 fatty acid.


Assuntos
Monoacilglicerol Lipases/química , Monoglicerídeos/química , Proteínas de Saccharomyces cerevisiae/química , Sítios de Ligação , Catálise , Clonagem Molecular , Cristalização , Hidrólise , Simulação de Dinâmica Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
8.
Nat Commun ; 5: 4150, 2014 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-24954722

RESUMO

The exploitation of catalytic promiscuity and the application of de novo design have recently opened the access to novel, non-natural enzymatic activities. Here we describe a structural bioinformatic method for predicting catalytic activities of enzymes based on three-dimensional constellations of functional groups in active sites ('catalophores'). As a proof-of-concept we identify two enzymes with predicted promiscuous ene-reductase activity (reduction of activated C-C double bonds) and compare them with known ene-reductases, that is, members of the Old Yellow Enzyme family. Despite completely different amino acid sequences, overall structures and protein folds, high-resolution crystal structures reveal equivalent binding modes of typical Old Yellow Enzyme substrates and ligands. Biochemical and biocatalytic data show that the two enzymes indeed possess ene-reductase activity and reveal an inverted stereopreference compared with Old Yellow Enzymes for some substrates. This method could thus be a tool for the identification of viable starting points for the development and engineering of novel biocatalysts.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Thermus thermophilus/enzimologia , Proteínas de Bactérias/genética , Catálise , Domínio Catalítico , Cristalografia por Raios X , Bases de Dados de Proteínas , Cinética , Modelos Moleculares , Oxirredutases/genética , Conformação Proteica , Thermus thermophilus/química , Thermus thermophilus/genética
9.
Biomacromolecules ; 14(6): 1769-76, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-23718548

RESUMO

A cutinase from Thermomyces cellullosylitica (Thc_Cut1), hydrolyzing the synthetic polymer polyethylene terephthalate (PET), was fused with two different binding modules to improve sorption and thereby hydrolysis. The binding modules were from cellobiohydrolase I from Hypocrea jecorina (CBM) and from a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM). Although both binding modules have a hydrophobic nature, it was possible to express the proteins in E. coli . Both fusion enzymes and the native one had comparable kcat values in the range of 311 to 342 s(-1) on pNP-butyrate, while the catalytic efficiencies kcat/Km decreased from 0.41 s(-1)/ µM (native enzyme) to 0.21 and 0.33 s(-1)/µM for Thc_Cut1+PBM and Thc_Cut1+CBM, respectively. The fusion enzymes were active both on the insoluble PET model substrate bis(benzoyloxyethyl) terephthalate (3PET) and on PET although the hydrolysis pattern was differed when compared to Thc_Cut1. Enhanced adsorption of the fusion enzymes was visible by chemiluminescence after incubation with a 6xHisTag specific horseradish peroxidase (HRP) labeled probe. Increased adsorption to PET by the fusion enzymes was confirmed with Quarz Crystal Microbalance (QCM-D) analysis and indeed resulted in enhanced hydrolysis activity (3.8× for Thc_Cut1+CBM) on PET, as quantified, based on released mono/oligomers.


Assuntos
Actinomycetales/enzimologia , Hidrolases de Éster Carboxílico/metabolismo , Polietilenotereftalatos/química , Proteínas Recombinantes de Fusão/metabolismo , Adsorção , Sítios de Ligação , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/genética , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Hidrólise , Modelos Moleculares , Polietilenotereftalatos/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética
10.
J Biol Chem ; 288(3): 2018-28, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23188825

RESUMO

Conjugative plasmid transfer is the most important means of spreading antibiotic resistance and virulence genes among bacteria and therefore presents a serious threat to human health. The process requires direct cell-cell contact made possible by a multiprotein complex that spans cellular membranes and serves as a channel for macromolecular secretion. Thus far, well studied conjugative type IV secretion systems (T4SS) are of Gram-negative (G-) origin. Although many medically relevant pathogens (e.g., enterococci, staphylococci, and streptococci) are Gram-positive (G+), their conjugation systems have received little attention. This study provides structural information for the transfer protein TraM of the G+ broad host range Enterococcus conjugative plasmid pIP501. Immunolocalization demonstrated that the protein localizes to the cell wall. We then used opsonophagocytosis as a novel tool to verify that TraM was exposed on the cell surface. In these assays, antibodies generated to TraM recruited macrophages and enabled killing of pIP501 harboring Enteroccocus faecalis cells. The crystal structure of the C-terminal, surface-exposed domain of TraM was determined to 2.5 Å resolution. The structure, molecular dynamics, and cross-linking studies indicated that a TraM trimer acts as the biological unit. Despite the absence of sequence-based similarity, TraM unexpectedly displayed a fold similar to the T4SS VirB8 proteins from Agrobacterium tumefaciens and Brucella suis (G-) and to the transfer protein TcpC from Clostridium perfringens plasmid pCW3 (G+). Based on the alignments of secondary structure elements of VirB8-like proteins from mobile genetic elements and chromosomally encoded T4SS from G+ and G- bacteria, we propose a new classification scheme of VirB8-like proteins.


Assuntos
Proteínas de Bactérias/química , Parede Celular/genética , Conjugação Genética , Enterococcus faecalis/genética , Plasmídeos/genética , Fatores de Virulência/química , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Anticorpos Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brucella suis/genética , Brucella suis/metabolismo , Parede Celular/metabolismo , Clostridium perfringens/genética , Clostridium perfringens/metabolismo , Cristalografia por Raios X , Enterococcus faecalis/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/microbiologia , Modelos Moleculares , Fagocitose/efeitos dos fármacos , Multimerização Proteica , Estrutura Secundária de Proteína , Transporte Proteico , Homologia Estrutural de Proteína , Fatores de Virulência/antagonistas & inibidores , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Biochim Biophys Acta ; 1821(7): 1012-21, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22561231

RESUMO

Monoacylglycerol lipases (MGLs) catalyse the hydrolysis of monoacylglycerol into free fatty acid and glycerol. MGLs have been identified throughout all genera of life and have adopted different substrate specificities depending on their physiological role. In humans, MGL plays an integral part in lipid metabolism affecting energy homeostasis, signalling processes and cancer cell progression. In bacteria, MGLs degrade short-chain monoacylglycerols which are otherwise toxic to the organism. We report the crystal structures of MGL from the bacterium Bacillus sp. H257 (bMGL) in its free form at 1.2Å and in complex with phenylmethylsulfonyl fluoride at 1.8Å resolution. In both structures, bMGL adopts an α/ß hydrolase fold with a cap in an open conformation. Access to the active site residues, which were unambiguously identified from the protein structure, is facilitated by two different channels. The larger channel constitutes the highly hydrophobic substrate binding pocket with enough room to accommodate monoacylglycerol. The other channel is rather small and resembles the proposed glycerol exit hole in human MGL. Molecular dynamics simulation of bMGL yielded open and closed states of the entrance channel and the glycerol exit hole. Despite differences in the number of residues, secondary structure elements, and low sequence identity in the cap region, this first structure of a bacterial MGL reveals striking structural conservation of the overall cap architecture in comparison with human MGL. Thus it provides insight into the structural conservation of the cap amongst MGLs throughout evolution and provides a framework for rationalising substrate specificities in each organism.


Assuntos
Bacillus/enzimologia , Proteínas de Bactérias/química , Monoacilglicerol Lipases/química , Monoglicerídeos/química , Fluoreto de Fenilmetilsulfonil/química , Sequência de Aminoácidos , Bacillus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Sequência Conservada , Cristalografia por Raios X , Escherichia coli , Humanos , Interações Hidrofóbicas e Hidrofílicas , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Monoacilglicerol Lipases/genética , Monoacilglicerol Lipases/metabolismo , Monoglicerídeos/metabolismo , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia Estrutural de Proteína , Especificidade por Substrato
12.
Methods Mol Biol ; 861: 313-27, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22426727

RESUMO

Interactions of lipases with hydrophobic substrate-water interfaces are of great interest to design improved lipase variants and engineer reaction conditions. This chapter describes the necessary steps to carry out molecular dynamics simulations of Candida antarctica lipase B at tributyrin-water interface using the GROMACS simulation software. Special attention is drawn to the preparation of the protein and the substrate-water interface and to the analysis of the obtained trajectory.


Assuntos
Candida/química , Proteínas Fúngicas/química , Lipase/química , Simulação de Dinâmica Molecular , Triglicerídeos/química , Sítios de Ligação , Candida/enzimologia , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Conformação Proteica , Software , Solventes/química , Especificidade por Substrato , Propriedades de Superfície , Água/química
13.
J Comput Chem ; 32(4): 600-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20812321

RESUMO

The influence of the total number of cores, the number of cores dedicated to Particle mesh Ewald (PME) calculation and the choice of single vs. double precision on the performance of molecular dynamic (MD) simulations in the size of 70,000 to 1.7 million of atoms was analyzed on three different high-performance computing facilities employing GROMACS 4 by running about 6000 benchmark simulations. Small and medium sized systems scaled linear up to 64 and 128 cores, respectively. Systems with half a million to 1.2 million atoms scaled linear up to 256 cores. The best performance was achieved by dedicating 25% of the total number of cores to PME calculation. Double precision calculations lowered the performance by 30-50%. A database for collecting information about MD simulations and the achieved performance was created and is freely available online and allows the fast estimation of the performance that can be expected in similar environments.


Assuntos
Computadores , Simulação de Dinâmica Molecular , Software , Computadores/economia , Metodologias Computacionais , Simulação de Dinâmica Molecular/economia , Fatores de Tempo
14.
J Am Chem Soc ; 130(42): 13969-72, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-18821754

RESUMO

Black and white are opposites as are oxidation and reduction. Performing an oxidation, for example, of a sec-alcohol and a reduction of the corresponding ketone in the same vessel without separation of the reagents seems to be an impossible task. Here we show that oxidative cofactor recycling of NADP (+) and reductive regeneration of NADH can be performed simultaneously in the same compartment without significant interference. Regeneration cycles can be run in opposing directions beside each other enabling one-pot transformation of racemic alcohols to one enantiomer via concurrent enantioselective oxidation and asymmetric reduction employing defined alcohol dehydrogenases with opposite stereo- and cofactor-preference. Thus, by careful selection of appropriate enzymes, NADH recycling can be performed in the presence of NADP (+) recycling to achieve overall, for example, deracemisation of sec-alcohols or stereoinversion representing a possible concept for a "green" equivalent to the chemical-intensive Mitsunobu inversion.


Assuntos
Álcoois/química , Álcool Desidrogenase/química , Álcoois/síntese química , Cetonas/química , Conformação Molecular , NAD/química , NADP/química , Oxirredução , Estereoisomerismo
16.
Chemistry ; 13(29): 8271-6, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17639544

RESUMO

Racemization is the key step to turn a kinetic resolution process into dynamic resolution. A general strategy for racemization under mild reaction conditions by employing stereoselective biocatalysts is presented, in which racemization is achieved by employing a pair of stereocomplementary biocatalysts that reversibly interconvert an sp3 to a sp2 center. The formal interconversion of the enantiomers proceeds via a prochiral sp2 intermediate the formation of which is catalyzed either by two stereocomplementary enzymes or by a single enzyme with low stereoselectivity. By choosing appropriate reaction conditions, the amount of the prochiral intermediate is kept to a minimum. This general strategy, which is applicable to redox enzymes (e.g., by acting on R2CHOH and R2CHNHR groups) and lyase-catalyzed addition-elimination reactions, was proven for the racemization of secondary alcohols by employing alcohol dehydrogenases. Thus, enantiopure chiral alcohols were used as model substrates and were racemized either with highly stereoselective biocatalysts or by using (rarely found) non-selective enzymes.


Assuntos
Álcool Desidrogenase/metabolismo , Racemases e Epimerases/metabolismo , Álcool Desidrogenase/química , Álcoois/química , Bactérias/enzimologia , Biotransformação , Catálise , Racemases e Epimerases/química , Estereoisomerismo
17.
J Org Chem ; 72(15): 5778-83, 2007 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-17580907

RESUMO

An easy to use computerized algorithm for the determination of the amount of each labeled species differing in the number of incorporated isotope labels based on mass spectroscopic data is described and evaluated. Employing this algorithm, the microwave-assisted synthesis of various alpha-labeled deuterium ketones via hydrogen-deuterium exchange with deuterium oxide was optimized with respect to time, temperature, and degree of labeling. For thermally stable ketones the exchange of alpha-protons was achieved at 180 degrees C within 40-200 min. Compared to reflux conditions, the microwave-assisted protocol led to a reduction of the required reaction time from 75-94 h to 40-200 min. The alpha-labeled deuterium ketones were reduced by biocatalytic hydrogen transfer to the corresponding enantiopure chiral alcohols and the deconvolution algorithm validated by regression analysis of a mixture of labeled and unlabeled ketones/alcohols.


Assuntos
Algoritmos , Cetonas/química , Espectrometria de Massas/métodos , Deutério/química , Hidrogênio/química , Marcação por Isótopo
18.
Chem Commun (Camb) ; (22): 2402-4, 2006 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-16733594

RESUMO

Employing the over-expressed highly organic solvent tolerant alcohol dehydrogenase ADH-'A' from Rhodococcus ruber DSM 44541, versatile building blocks, which were not accessible by the wild type catalyst, were obtained in > 99% e.e.; furthermore, employing d8-2-propanol as deuterium source, stereoselective biocatalytic deuterium transfer was made feasible to furnish enantiopure deuterium labeled sec-alcohols on a preparative scale employing a single enzyme.


Assuntos
Álcool Desidrogenase/química , Álcoois/síntese química , Deutério/química , Hidrogênio/química , Cetonas/química , Álcool Desidrogenase/biossíntese , Álcoois/química , Catálise , Escherichia coli , Estudos de Viabilidade , Marcação por Isótopo/métodos , Estrutura Molecular , Rhodococcus/enzimologia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...